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Ultrasonic attenuation studies in dilute superconducting Nb-Zr alloys have revealed strongly temperature-
dependent absorption peaks which cannot be explained in terms of single electron-phonon scattering proc­
esses. The set of temperatures at which these peaks occur is dependent on the frequency of the sound wave 
and the strain content of the sample. A phenomenological model is proposed which interprets the absorption 
peaks as being due to an exchange of energy which occurs when the sound frequency is equal to one of a set 
of collective excitation modes of the electron gas. The assumptions on which the model is based are the 
same as those which yield collective excitations within the energy gap in more fundamental descriptions of 
the superconducting state. The phenomenological treatment involves a hydrodynamic approach in a finite 
superconducting phase, based on volume derivatives of the electronic free energy under conditions of charge 
neutrality. The interaction constant for the collective excitations is empirically assumed to be decreased by 
the factor, x(ro) = r_1^oexp(a — i^o-1), when the extent of the superconducting phase ro is less than the 
coherence distance £. Good agreement between the experimental data and the results of the proposed model 
is obtained. 

INTRODUCTION 

TH E study of the attenuation of ultrasonic 
waves by pure metals at low temperatures has 

yielded considerable insight into the interaction between 
phonons and the conduction electrons in both normal 
and superconducting metals. Morse1 has discussed this 
interaction in detail. Concisely, the magnetoacoustic 
effect has been fruitful in the mapping of Fermi surfaces, 
and attenuation measurements made below the critical 
temperature in elemental superconductors have pro­
vided a striking verification of the Bardeen-Cooper-
Schrieffer2 (BCS) theory of superconductivity. In view 
of the short electron mean free path in alloys and in 
impure elemental solids, it has long been felt that there 
would be no observable electronic contribution to the 
ultrasonic attenuation. In this paper, recent measure­
ments of the attenuation of ultrasonic waves in samples 
of Nb-Zr alloys are reported; this paper reports an 
extension of previously discussed experiments by the 
authors3 and contains details of a phenomenological 
calculation based upon the model of hard supercon­
ductivity which incorporates a filamentary structure. 
The model is successful in predicting some quantitative 
features of the structure in plots of attenuation versus 
temperature, in the superconducting state. Results of 
measurements on the influence of heat treatment on the 
behavior of the attenuation with temperature are re­
ported and are discussed in terms of the proposed model. 

EXPERIMENTS 

The superconducting alloys were prepared by arc 
melting in an inert atmosphere previously weighed 
samples of niobium and zirconium bar stock. X-ray and 

1 R. W. Morse, Progress in Cryogenics, edited by K. Mendels­
sohn (Academic Press Inc., New York, 1959), Vol. 1, p. 221. 

2 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 
1175 (1957). 

3 L. T. Claiborne and N. G. Einspruch, Phys. Rev. Letters 10, 
49 (1963). 

emission spectroscopy indicated that the samples were 
uniform solid solutions and contained no zirconium in 
a precipitated phase. The samples, after being lapped 
to yield two parallel faces, are roughly described as 
cylinders of lj-in. diam and f-in. length. The ultrasonic 
attenuation measurements were made by the pulse-echo 
technique with equipment of the type described by 
Chick et al.A\ on occasion, the pulse-echo equipment 
described by Einspruch and Manning5 was used. A 
radio frequency pulsed oscillator is used to excite a 
quartz transducer which is bonded to the sample by a 
thin layer of Nonaq6 stopcock grease. The mechanical 
pulse, produced by the transducer, is reflected each time 
it reaches the face of the sample opposite to the trans­
ducer; after each transit, some of the mechanical energy 
is sampled and reconverted to electrical energy by the 
same transducer. These electrical signals are amplified, 
detected, and displayed on an oscilloscope. The varia­
tion with temperature of echo height is monitored with 
a calibrated pulse comparitor; the temperature de­
pendence of the change in the attenuation is thus 
obtained. 

EXPERIMENTAL RESULTS 

The initial observations made in an unannealed 
N b - 1 % Zr alloy were reported previously3 and are 
shown in Fig. 1. The following conclusions were reached 
in regard to the mechanism producing the resonance 
peaks: (1) I t is a property of the superconducting state. 
(2) I t is probably related to pressure and/or charge 
density modulations. (3) The set of temperatures at 
which peaks occur is strongly dependent on the fre­
quency of the sound wave. (4) The amplitude of the 
peaks decreases as the frequency of the sound wave 
increases. (5) The mechanism is not dependent on the 

4 B . B. Chick, G. P. Anderson, and R. Truell, J. Acoust. Soc. 
Am. 32, 186 (1960). 

6 N. G. Einspruch and R. J. Manning, J. Acoust. Soc. Am. 35, 
215 (1963). 

6 Nonaq, Fisher Scientific Company. 
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FIG. 1. (a) Relative attenuation (dB cm"-1) at 10.0 Mc sec-1 as 
function of temperature for 99.9% pure Nb. (b), (c), (d) Attenu­
ation (dB cm-1) as function of temperature in Nb—1.0% Zr alloy 
for 29.0, 16.5, and 10.0 Mc sec-1, respectively. (d') Data of curve 
(d) with background (a) removed. 

amplitude of the sound wave for the small strains used 
in this experiment. 

Measurements of the temperature dependence of the 
compressional wave absorption in other Nb-Zr alloys 
have been made over the same range of frequency (5 to 
30 Mc sec-1) and temperature (1.3 to 4.2°K). Structure 
similar to that in Fig. 1 was found for all samples tested 
(1.0%, 2 .1%, 2.6%, 3.6%, and 4.5% Zr). The most 
meaningful comparison of results is made for annealed 
samples, since the dislocation structure resulting from 
preparation can vary greatly from sample to sample. 
Figure 2 shows the temperature variation of the absorp­
tion at 12 Mc sec -1. From Figs. 2(a) and 2(b), one can 
see that some of the peaks are reduced in amplitude as 
the sample is annealed, while the temperature at which 
each peak occurs is essentially unchanged. One can also 
see that the structure which remains after 16 h of 
annealing is the same for the 1.0% Zr and the 2.6% Zr 
samples, except for a possible small difference in ampli­
tudes. In the absence of a model to explain these results, 
a reasonable inference might be that the peaks which 
are removed by annealing are related to dislocations, 
and the remaining peaks are due to the presence of the 
Zr ions. These results will be discussed later in terms of 
a model proposed in the next section. 

PHENOMENOLOGICAL THEORY 

A phenomenological treatment of the attenuation of 
compressional sound waves in metals via single, conduc­
tion electron-lattice scattering can be made from a 
consideration of electron ion density modulations under 

conditions of charge neutrality (cf. Pippard7). Starting 
with the Boltzmann transport equation and invoking 
Maxwell's equations, one can derive an expression for 
conversion of energy from the sound wave to random 
thermal energy due to irreversible scattering of the 
electrons. The electron and lattice systems are separated 
except for the fact that the electron distribution must 
follow the lattice ions in order to cancel the electric 
fields arising from displacements of the ions. The energy 
loss mechanism for the electron-lattice system is the 
random scattering of the electrons by impurities or 
thermal phonons. The expression derived by this ap­
proach should be valid for all sound frequencies up to 
the Debye cutoff frequency for the particular lattice. 
In general, this electronic attenuation is a monotonically 
increasing function of the parameter qle where q is the 
magnitude of the propagation vector of the compres­
sional wave and le is the electron mean free path. 

When qle becomes an order of magnitude less than 
unity, the electronic attenuation becomes negligible. 
Therefore, for sound frequencies of 107 to 108 cps, le 

must be of the order of 10~2 to 10 - 3 cm in order for the 
electronic attenuation to be measurable. This condition 
can be achieved only for extremely pure metals 
(~99.999%) at liquid-helium temperatures. I t can be 
seen that for superconducting alloys, which have high-
strain content as well as high-impurity content, the 
ultrasonic attenuation due to single-electron processes 
should be quite small. The data cited in the last section, 
however, indicate that there is some mechanism for 
temperature- and frequency-dependent compressional 
wave ultrasonic absorption which is characteristic of the 
superconducting state. Since the temperature depend­
ence of the parameters of the superconducting state is 
determined by the electronic properties, it follows that 
there must be some additional mechanism for inter­
action between the lattice vibrations and the electron 
distribution which has been overlooked heretofore. 

Anderson8 and Bogoliubov9 have shown that there 

"i—i—I—i—i—r T i i I r A 
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FIG. 2. Relative at­

tenuation (dB cm"-1) 
at 12.0 Mc sec-1 as a 
function of tempera­
ture for (a) N b - 1 . 0 % 
Zr after 2-h anneal; 
( b ) N b - 1.0% Zr after 
18-h anneal; and (c) 
N b - 2 . 6 % Zr after 
16-h anneal. 

7 A. B. Pippard, Phil. Mag. 46, 1104 (1955). 
8 P. W. Anderson, Phys.^Rev. 112, 1900 (1958). 
9 N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz, 34, 58 (1957) 

[translation: Soviet Phys.—JETP 7, 41 (1957)]. 
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are low-frequency, collective-type excitation modes for 
the electrons in the superconducting state which corre­
spond to pressure waves in a neutral Fermi gas. The 
basic equation used in the hydrodynamic formalism for 
plasma oscillations involves terms in the electromag­
netic fields and a term in the pressure gradient. Pressure 
gradient effects for normal metals are negligible com­
pared to the electric field effects; however, pressure 
effects in superconductors become dominant for low-
frequency density modulations. Such modes would de­
cay rapidly in the normal state, for which the density 
of states is finite at the Fermi surface, while excitation 
states lying within the superconducting energy gap have 
long lifetimes. The excitations have been shown to enter 
into both real and virtual processes. The high-frequency 
plasmon modes, for which Coulomb forces are im­
portant, exist in the superconducting state and are 
essentially unchanged from the normal state. 

The authors' initial paper3 on the subject of the ultra­
sonic absorption peaks included an analysis based on 
isothermal displacements of a phase boundary between 
two types of superconducting material. An equilibrium 
position of the phase boundary, under the constraints of 
the system, which minimized the electronic free energy 
was assumed. Displacement of the boundary would lead 
to a linear restoring pressure, hence, to a set of 
temperature-dependent resonant modes of vibration for 
the phase boundary. A major difficulty arises, however, 
when one attempts to assign an inertia to the boundary. 
In the initial paper an inertial density of the order of the 
electron-mass density was assumed. The form of the 
resonance condition, obtained by setting the sound fre­
quency equal to one of the harmonic frequencies of 
vibration for the phase boundary, was in good agree­
ment with the Nb-Zr absorption data, and permitted a 
simple interpretation of the absorption peaks. I t will be 
shown below that a consideration of density modulations 
within the electron gas in a finite single phase under 
conditions of charge neutrality leads to the same form 
for the resonance condition without the difficulty in 
determining the inertial density. I t is now recognized 
that the present analysis is simply a phenomenological 
derivation of the excitation modes, with appropriate 
boundary conditions, for a superconducting phase of 
finite dimensions. The special case for which the phase 
boundary is free to move with the electron density 
variations was considered in the initial paper. Here, a 
more general phenomenological approach will be con­
sidered in so far as density modulations within a single 
phase will be considered, and the resonance conditions 
will be obtained for both fixed and free phase boundaries. 

The derivation will proceed from a hydrodynamic 
approach. For the low-frequency collective excitations 
in the superconducting state, the electric field effects 
are neglected. Specifically, it will be assumed that for 
sufficiently slow local variations of electron density with 
respect to a fixed lattice, the long-range Coulomb inter­

actions can be neglected so that the important restoring 
forces on the electron distribution arise from the pres­
sure gradients. Then, the pressure-density relation for 
the electron plasma can be obtained from the iso­
thermal volume derivative of the Helmholtz free energy. 
I t will be shown that the isothermal condition does 
indeed, apply to density modulations in the frequency 
range to be considered. 

The concept of a pressure associated with the super­
conducting state was first considered in regard to the 
electromagnetic stresses at the boundary of a super­
conducting region. A change in volume 5V of the super­
conducting phase, which involves no change in free-
energy density / changes the total internal free energy 
F by an amount 

8F=-(fn-fs)8V. (1) 

Normal material is converted to superconducting ma­
terial in dV. There is an effective pressure P= — 5F/8V 
which does work against the electromagnetic stresses, 
and in equilibrium 

1 4TTX2 

(Jn-f.) = hJLj.ii*o*-H0*(T), A= , (2) 
8TT C2 

where A is the penetration depth, j8U is the surface 
current, and HC(T) is the critical field.10 This difference 
in energy density is defined to be the Meissner pressure. 
In order to find the electron gas pressure in the super­
conducting state, a volume change which implies a 
change in electron density must be considered. I t should 
be mentioned that in the superconducting state there is 
an ambiguity between the Helmholtz and Gibbs free 
energy. Thus, an isothermal volume derivative of the 
BCS free energy has the form of a true pressure.The 
superconducting, electronic free energy in volume V is 

F8^-hV\_nFe\T)-Ss{T)^, (3) 

where UF is the density of states at the Fermi level, 
e(r) is the temperature-dependent energy gap, and 5S is 
the entropy of the superconducting state. 

Single-Phase Superconductors 

Consider a single phase of superconducting material 
occupying V. Since there is only a change in the elec­
tronic free energy between the normal and superconduc­
ting state to a first approximation, 

Fs = Fn-(l/8T)Hc*(T). (4) 

The actual temperature dependence of HC(T) and Fs 

is complicated; however, the Gorter-Casimir11 relation 

^c(r)=^c(o)[i~(r/rc)
2] (5) 

is within about 4 % of the BCS prediction and is as-

10 F. London, Super fluids (Dover Publications Inc., New York, 
1960), Vol. 1, p. 138. 

11 C. J. Gorter and H. B. G. Casimir, Physik. Z. 35, 963 (1934). 
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sumed to be correct. For simplicity, Eq. (4) will be 
used for the isothermal derivative of the free energy 
with respect to volume. The variation of Hc(0) and Tc 

with respect to volume can be found from the variation 
of e(0) and nF according to the simple BCS relations 

Tc=ze(0), (6) 

where z is a constant. In a semiempirical calculation of 
the transition temperature and the effects of pressure 
on the transition, including the contribution of umklapp 
processes to the electron-phonon interaction, Morel12 

developed a formalism for the variation of e(0) with 
volume changes, i.e., 

d lne(O) /0.85 &D\ Td \rmF 1 
-=-37+ln( +2 

\ Tc /Ld\nra J dlnrs Tc /Ldlnr8 

/O.S5®D /O.850iArm* a2 l 
+ln2( ) , 

\ Tc )Vm 2(l+a2)J 
(7) 

where rs is the Fermi-Thomas radius, y is the Griineisen 
constant, ©D is the Debye temperature, m is the electron 
mass, m* is the normal electronic effective mass,^and 
a2—0.167 rs. rs is defined by f7r(#0/'s)

3= 1/N, where a0 is 
the Bohr radius and N is the number of electrons per 
unit volume. If a small linear displacement y of one 
surface of area d of the volume element is considered, 
and if the second derivative of e(0) with respect to rs 

exists and is positive, then it will be shown that there 
exists an excess pressure linear in displacement which 
will lead to a hydrodynamic wave equation. 

Let V(y) = Cfcp—y]. The total hydrodynamic pressure 
of the neutral Fermi gas is 

/dFs\ 
ps--(dFs/dV)T=- a-H — . (8) 

\ dy / T 

From Eq. (4) it follows that 
/dnF\ HC(T) /dHc(T) 

Ps=-^2(kBT)n[ -2-
\ dy /T 

+ 

ST \ dy A 

\\ir2(kBTYnF+— H*{T) 
L 8TT 

(9) 

where Fn is denned by Fn=—\ir2(kBT)2nF\ and ks is 
the Boltzmann constant. The partial derivatives of e(0), 
nFj and Tc with respect to y will have the forms 

de(0)_ 

dy 

dTc 

dy 

'dnF 

dy 

a(0)/ y\ 

TJ y\ 

nF/ y\ 
(10) 

The constants P, Q, A, and B will be determined below. 
Since 

/dHc(T)\ _dHc{U)r /TV 

\ dy )T dy L \Te) 

then 

/dHc{T)\ 

dy 

+ H - ( O > ^ I - ( £ ) S ] ' 

{—)=^r\[<A+2P)+{B+2^ 

- (£>I ( 2 p -" ) + ( 2 e - B ) i ] | • (I,) 

When coefficients of powers of (y/l) are collected, the 
complete hydrodynamic pressure is 

Ps— 
#c

2(0) 

8 T 
[l-(4+2P)]+[(4P-2)+/5(l-^)] 

X 

nm/y 
Sw \ l 

/ T\2 / T\4} 

-(B+2Q)+(4Q-PB)(-A 

• ( 2 Q - 5 ) ©* (12) 

where f3=-\T2nF{kBTc)
2[H2(<d)/ST~Yl. According to 

BCS theory, the constant fi is a universal constant 
(0=2.14) which expresses the law of corresponding 
states for superconductors. For real superconductors, 
the simple relation e(0)=1.75Z,

c does not always hold; 
therefore, /3=(2.14)(1.75/s)2, where z is defined by 
Eq. (6). The first term in Eq. (12) represents the hydro­
static pressure PQ; the second term represents the excess 
pressure, Pe, which is linear in the displacement y. The 
total electron density is p=p0(l+y/l); the excess density 
corresponding to Pe is pe—po(y/l), where po is the un­
perturbed electron density. Extrapolating to a con­
tinuum representation of the electron gas, one expects a 
velocity of propagation for a compressional wave to be 

c2=Pepr1 = -
#c

2(0) 

STPQ 

T\2 

-(B+2Q)+(4Q-pB)(-\ 

-(2Q-B^)). (13) 

12 P. Morel, J. Phys. Chem. Solids 10, 277 (1959). 

I t remains to be shown from an evaluation of the con­
stants that c is real. 

The assumption will be made that the second deriva-



U L T R A S O N I C A B S O R P T I O N BY S U P E R C O N D U C T I N G N b - Z r 625 

tive of €(0) with respect to volume changes can be ob­
tained from Eq. (7). For an isotropic medium, 

dlmf/ 1 dln\f/ 
l-

dy 3 d lnrs 

(14) 
[ m* a2 "I 

= 2 . 3 , 
m 2 ( l + a 2 ) J 

where \f/ is any continuous function of volume. Thus, 
the constants will be found from derivatives with respect 
to r8. Hence, 

d2e(0) r 1 dTc Tc-ird lne(0)-

drs 

r 1 dTc Tnrd lne(0n 

i-rs drs r s
2JL dlnrs J 

B rTcli d /d\miF \ 

+ _ l n [ o . 8 5 0 D r r l ] + 2 
L rs J 1 or 8 \d mrs / 
d /m* a2 \ 

+ — ln2[0.85e DTC-1! ) 
drs \m 2 ( l + a 2 ) / 

using the data given by Morel: 

d \ntiF 

dlnrs ' ^ T m 2 ( l + a 2 ) -

- 3 7 = - 7 . 1 , a 2=0.40, 2T=19.7, 

@ D = 1 0 9 ° K , TC=3.37°K. 

The five terms in Eq. (16) are 368, —13.8, +16.3 , 
—0.66 and —0.82, respectively. I t can be seen that the 
strongly dominant term is K(K—\). The dominance 
of the first term seems to be the case for the other 
superconductors for which Morel's equation gives a 
result in agreement with experimental data. Since 

de(0) 6(0) 

dy -~b K+iK(K-\y 
u 

(17) 

d /fn* \ 1 
+ ln 2 [0 .85© i ) r c - 1 ]—( —a2) 

drs\m /2(l+a 

2 ( l + a 2 V 

1 

2(l+a2) 

m*a2 d 
+ln2[0.85@ jr>77-1]-: (1+a2)-1 \ . (15) 

2m drs 

Using the fact that 

then P=~lK and Q~-%(K-1)K. For indium, 
P= — 6.6 and Q= —123. For a simple free-electron gas, 
one would expect [d l n ^ / d lnr J = — 1; however, Olsen 
and Rohrer13 have shown that for real metals 

d IntiF/d \nrs = 3(g— 1) , 

where g is a constant which is determined experi­
mentally. I t is assumed that (dnp/dy) can be determined 
by expansion in powers of (y/l) to give 

wr ire* 
-az=fiF~ 

m 

dfiF 

dy 
-J^-l)I.+?]. (.8, 

where UF is the magnitude of the wave vector at the 
Fermi surface and 

d ln^F&/~2 fd ln^F 

d lnrs 
[ a mtiF "1 

+2 , 
d lnrs J 

Then A = B = g— 1; for indium g - 1 = 1.7. 
c2 can be rewritten as 

#c
2(0) 

^= IB+2Q2 
8xpo 

the derivatives are readily calculated. The result is 

d2e(0) e(0) 

drs 

x|I_(«=*fyl)"+(*=fYl),}1 m 
l \ 20+B AT J \2Q+BATJ \ 

(2Q-B\( T\*] 

2Q+B/ 

(K-l)K-(3y+K) 

-2 ln[0 .85@ f l re- 1 ] (37+^) 

fm* a2 ~ird \vaiF "1 
+ ln 2 [O .850 f l r c - 1 ] + 2 

Lm 2 ( l + a 2 ) J L d l n r s J 

rm* a4 -] ] 
- l n 2 [ 0 . 8 5 @ B r c - i ] , (16) 

Lm 2 ( l+a 2 ) 2 J J 

or 
c 2 = c 0

2 [ l - J r 2 + a r 4 ] . (20) 

where 

K= 
d lne(0) 

dlnrs 

As an example of the magnitude of this derivative for 
a real metal, Eq. (16) will be evaluated for indium 

For indium, po^ lO - 5 g cm.-3 and # c (0 )~300 Oe. 
Hence, Co^lO5 cm sec -1. The term Fn(Tc) for indium 
is approximately 105 ergs cm*"3, while J9"C(0)(87T)~1 is 
approximately 3X103 ergs cm - 3 . Therefore, the tem­
perature coefficients are #^0.010 and 5~0.19. I t can 
be seen that in this calculation the temperature function 
is positive for all temperatures below Tc\ therefore, 
there exists a real velocity of propogation for a com-
pressional wave in the superconducting electron gas. 

Consider a slab of superconducting material of thick­
ness / in the direction of propagation. One would expect 
a discrete set of standing wave modes for these com-

13 J. L. Olsen and H. Rohrer, Helv. Phys. Acta 30, 49 (1957). 

file:///ntiF
file:///vaiF
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pressional waves. If the boundaries are fixed, then the 
harmonic modes are given by vn=nv^\—bT2+aTA']112; 
if the boundaries are free, vn = (2n+1>0[1 - bT2+aT*J/2 

where VQ=CO(21)~1 and n is a positive integer. 
Although the electrons are capable of density modula­

tions relative to a fixed lattice, these modulations re­
quire that the electrons be dragged accordingly. I t 
would not seem unreasonable, therefore, to suppose a 
direct interaction between lattice phonons and the col­
lective excitation modes. I t would appear likely that 
there would be a maximum exchange of energy from a 
compressional ultrasonic wave to the electron gas when 
the sound frequency, vs, is equal to the frequency of one 
of the harmonic standing wave modes. Thus, absorption 
peaks would occur at temperatures for which vs = vn. 

The ultrasonic absorption measurements which are 
made in single phase, soft superconductors usually in­
volve a path length on the order of 1 cm or more. For 
indium, a 1-cm thickness implies J > 0 ~ 1 0 5 sec -1 . In the 
discussion of the data it will be shown that the energy 
absorbed from the sound wave decreases rapidly with 
the order of the harmonic. A sound frequency of 107 

sec - 1 is of the order of the 100th harmonic; therefore, 
the energy absorbed via this mechanism is negligible 
in the megacycle frequency range. If, however, there 
are smaller regions within a bulk superconductor which 
have altered superconducting properties so that there 
are separate superconducting phases present, it would 
be possible to have fundamental excitation modes in 
the megacycle frequency region. 

Hard Superconductors 

A hard superconductor, in general, has a high-strain 
content arising from both impurities and dislocations. 
The various theories for the current-critical field be­
havior of a hard superconductor suppose that if the 
applied magnetic field exceeds the bulk critical field, 
the strained regions act as nucleating centers for the 
formation of smaller regions capable of sustaining a 
supercurrent. As has been pointed out, the strain fields 
also alter the local superconducting parameters such 
as the energy gap. 

An idealized hard superconductor can be represented 
as consisting of uniformly spaced regions of strained and 
unstrained material. Initially, a semi-infinite slab of 
alternating layers of strained (modified) and unstrained 
(unmodified) materials will be considered. The thickness 
of a region is taken to be 2r0. All magnetic fields are 
assumed to be excluded from the interior regions. For 
simplicity, the strain fields are taken to be uniform 
throughout the modified regions. There will be an inter-
facial energy at the boundary between the modified and 
unmodified phases. Presumably, the location of the 
phase boundary is such as to minimize the electronic 
free energy subject to the constraints of the system. The 
interfacial energy should depend on the difference in 
energy densities between the two phases. The total 

free energy of a system containing one modified and 
one unmodified region is of the form 

F=Fsl+Fs2-Sa(Hcl*-Hc2
2), (21) 

(where 5 is a characteristic length) plus possibly a 
surface term involving the difference in normal elec­
tronic free-energy density. I t can be seen that the 
derivative of the total free energy with respect to a 
displacement of the phase boundary yields a restoring 
force acting on the boundary having a temperature de­
pendence which is a quadratic in T2, similar to Eq. (12). 
Actually, the initial report of this absorption phe­
nomenon included an attempt to derive the resonance 
condition in terms of this restoring force on the bound­
ary. The hydrodynamic approach of the present paper, 
however, is an improved description of the actual 
physical situation. The role of the restoring force on the 
phase boundary in ultrasonic absorption is discussed 
below. 

For the two-phase system, one would expect two sets 
of discrete standing wave modes for the collective excita­
tions. The fundamental frequencies will depend upon the 
extent of the phase and the parameters which determine 
the velocity of propagation as in the single phase calcu­
lation. In the real, hard superconductor, the strain fields 
are those associated with defects such as dislocations 
and impurities. The extent of such strain fields is small 
in general, e.g., the order of 10 A. Due to the nonlocal 
nature of the superconducting state, interactions over 
distances less than the coherence distance £ must be 
greatly reduced. I t will be postulated that the interac­
tion responsible for the collective excitations is reduced 
by the empirical function x W ^ ^ o ? " 1 exp(ce— £r0

-1), 
where a is a constant of order unity and 2r0 is the extent 
of the phase in the direction of propagation. The func­
tion x(ro) is one of the simplest forms that could be 
assumed; it will be shown that this function leads to 
results in good agreement with the Nb-Zr data. In 
addition, it has been shown by one of the authors14 that 
x(ro) leads to a prediction for the solute concentration 
dependence of the transition temperature in dilute 
superconducting alloys which is in remarkably good 
agreement with data for various solutes in Sn, In, 
and Al. 

The complete expression for the fundamental collec­
tive excitation mode in one of the small strained regions 
with fixed phase boundaries is 

v=votl-bT2+aT*J/2, (22) 
where 

Hc(0)r-B-2Q-]V2 

„0== _ exp[a—Jro""1], 
4£ L 8TTPO J 

2Q-B 
a~' {2Q+B)ry 

14L. T. Claiborne, J. Phys. Chem. Solids (to be published). 
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and 
4Q-0B 

ft—. (23) 
(2Q+B)Te* 

Gibbons and Renton15 have considered the conditions 
for isothermal compression over a length / in a metal. 
The time required to establish thermal equilibrium is 

t=CP/8K, (24) 

where C is the specific heat in J cm -3 , and K is the 
thermal conductivity in W (°K)_ 1 cm - 1 . In terms of a 
compressional wave in a solid medium, the frequency at 
which the crossover from isothermal to adiabatic con­
ditions occurs is 

VC=CC2/16K, (25) 

where the appropriate length is one-half the wavelength 
of the sound wave. For a compressional mode in the 
electron gas, the electronic specific heat must be used. 
I t should be noted that when one considers the adiabatic 
and isothermal conditions for a fixed length, the high-
frequency processes are adiabatic, while the low-fre­
quency processes are isothermal. When the length under 
consideration is one-half the wavelength of a sound 
wave, which is inversely proportional to the frequency, 
the situation is reversed. The thermal relaxation time 
decreases as the inverse square of the frequency so that 
high frequencies imply isothermal conditions and low 
frequencies imply adiabatic conditions. For indium, the 
electronic specific heat at the transition is approximately 
5X10"4 J cm - 3 , the thermal conductivity is approxi­
mately 8 W °K - 1 cm - 1 ; thus the cross-over frequency 
is y c ^4X10 4 sec -1. Consequently, the higher harmonics 
of the collective modes for the 1-cm-thick indium sample 
are isothermal. The isothermal conditions for the Nb-Zr 
system wTill be considered in the discussion below. 

Intermediate State 

There is one other situation in which it might be 
possible to observe collective modes ultrasonically. If 
in the intermediate state there is a number of strata of 
superconducting material having approximately the 
same thickness d in the direction of propagation, then 
there is a possibility that a discrete set of collective 
modes exists which can be exicted ultrasonically. The 
free-energy density is altered somewhat in the super­
conducting phase of the intermediate state, but one 
would expect the fundamental frequency to be tempera­
ture-dependent and inversely proportional to d. At a 
fixed temperature the frequency would be determined 
by d, which is, in turn, determined by the applied 
magnetic field H. Although the details of the calculation 
are not presented here, one can see that ultrasonic 
resonance peaks as a function of magnetic field should 
be expected. 

» D. F. Gibbons and C. A. Renton, Phys. Rev. 1147 1257 (1959). 

Recently, Leibowitz and Chandrasekhar16 have re­
ported an oscillatory dependence of the ultrasonic ab­
sorption on magnetic field in the intermediate state 
which cannot be entirely attributed to the normal 
magnetoacoustic effect. At this time, their data have 
not been compared with a calculation such as has been 
indicated here; however, it does seem that the excitation 
of collective modes is a distinct possibility as the source 
of this oscillatory absorption behavior. 

DISCUSSION OF DATA AND THEORY 

A study of the data for the 1% Zr sample such as the 
16.5 Mc sec - 1 data of Fig. 1 indicated that there were 
three sets (small, medium, and large) of absorption 
peaks present. According to the present model, each set 
of peaks represents consecutive harmonics of the tem­
perature-dependent fundamental mode of collective 
excitation for one type of superconducting phase. The 
temperatures at which the maxima occur should be 
determined from either vs = nv for fixed boundaries, or 
vs—{2n+l)v for free boundaries, where vs is the sound 
frequency and v is determined from Eq. (22). 

The constants v0j a, ft, and the order of one of the 
harmonics are determined from the data at one measure­
ment frequency. The results obtained from fitting the 
experimental data for the 1% Zr sample at one fre­
quency are given in Table I for each of the three sets of 

TABLE I. Experimental values of the three sets of constants. 

Small Medium Large 

voCMcsec"1) 0.237 6.563 10.5 
a(°K-2) 0.000125 0.00210 0.000316 
6(°K-4) 0.0209 0.0849 0.0575 

peaks. The positions of the maxima for all other sound 
frequencies are correctly predicted by these constants. 
The order of the harmonics goes as n, indicating fixed 
boundary conditions. 

If one assumes that the temperature spread of each 
absorption peak represents a frequency "band width" 
for the absorption, then the temperature spread of any 
harmonic can be predicted at any sound frequency from 
an experimental fit at a single-sound frequency. The 
fitting of the data and the prediction of the absorption 
at other frequencies are illustrated in Figs. 3 and 4. 
Curve (a) of Fig. 3 shows the data for 16.5 Mc see -1. 
Curve (b) is the composite curve of the interpolated ab­
sorption peaks drawn on line (c). Except for the base line, 
which is a monotonically decreasing function of tem­
perature, the interpolated absorption peaks of line (c) 
reproduce the quantitative positions of the data as well 
as the qualitative shape of curve (a). The test of the 

16 J. R. Leibowitz and B. S. Chandrasekhar, Bull. Am. Phys. 
Soc. 8, 308 (1963). 
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FIG. 3. (a) Ex­
perimental curve— 
attenuation versus 
temperature at 16.5 
Mc sec"1 in Nb 
- 1 . 0 % Zr alloy, (b) 
Composite theoreti­
cal curve, (c) Inter­
polated maxima. 
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interpretation is to predict the data for the same sample 
at other sound frequencies. In Fig. 4 on line (c) the 
predicted peaks at 10.0 Mc sec - 1 are plotted, keeping 
the relative amplitudes of the three sets of peaks the 
same as for 16.5 Mc sec -1. The composite predicted 
curve (b) agrees remarkably well with the data of 
curve (a). Again there is a base line shift which is not 
accounted for. The agreement of the composite pre­
dicted curves for the other frequencies for which data 
were taken in the same sample is equally good. Con­
sequently, there seems to be a strong experimental 
verification of the resonance condition. An additional 
qualitative feature of the data is the dependence on n of 
the amplitude and width of the peaks. The amplitude 
seems to be a monotonically decreasing function of n 
while the frequency band width is relatively insensitive 
to the order of the harmonic. Taking into account the 
amplitude variation, the agreement between curves (a) 
and (b) of Fig. 4 would be even better. The amplitude 
dependence on n can easily be seen by comparing 
curves (c) and (d) of Fig. 1. 

As was pointed out in the section on experimental 
results, some of the peaks were reduced in amplitude 
when the 1% Zr sample was annealed. The predicted 
composite curve for 12 Mc sec - 1 is given by curve (a) in 
Fig. 5. The data observed after 2 h of annealing are 
given by curve (b) in Fig. 5. I t is readily noted that 
the medium and large peaks have been somewhat re­
duced in amplitude relative to the small peaks. If the 
amplitudes of the medium and large peaks are reduced 
by a factor of 2, the composite curve (c) results and the 
quantitative as well as the qualitative agreement is con­
siderably improved. After an additional 16 h of anneal­
ing, all that remains of the "large" peaks are two small 
edges on the remaining small peaks, as can be seen in 
curve (d) of Fig. 5. An examination of curves (b) and (c) 
of Fig. 2 reveals that the small peak structure of the 
1% Zr sample after an anneal time of 18 h is essentially 
the same as that for the 2.6% Zr sample after 16 h of 
annealing. The "medium" and "large" peaks are still 
in evidence in the 2.6% Zr sample data but have been 
greatly reduced. 

Since the Zr ions and the dislocations are quite 

likely to be randomly distributed, one would not expect 
any coherent resonance peaks to be associated with the 
unstrained niobium background. The small peaks are 
not affected by annealing; therefore, they must be due 
to some type of modified region which is fixed in the 
crystal. Perhaps the most obvious assumption would be 
that these peaks are due to the superconducting phases 
in the strain fields associated with the Zr ions. The 
medium and large peaks, however, must be associated 
with modified regions whose number is decreased by 
annealing, e.g., dislocations or grain boundaries. 

At present, there is not sufficient information avail­
able about Nb to permit a complete evaluation of the 
theoretically predicted constants as given in Eq. (23). 
Some conclusions can be reached, however, regarding 
orders of magnitude and the relative sizes of the con­
stants for dislocation strain fields compared with the 
strain fields associated with the presence of Zr ions in 
the Nb system. Assuming that Q and B are of approxi­
mately the same magnitude as calculated above for 
indium and that Tc and Hc(0) are approximately the 
same as for the unstrained pure niobium and using 
Eq. (23), then & = 0.026°K-2 and a=0.00015oK"4. From 
Table I it is seen that these values are of the correct 
magnitude and are, in fact, quite close to the experi­
mental values for the small peaks. The fundamental 
frequency at absolute zero is po~106£ -1 exp(a— fnT1)-
In an alloy, such as the 1% Zr sample, with high strain 
content, one would expect the coherence distance to be 
less than the penetration depth. A value of 10 - 6 cm is 
probably a good estimate. Using the fundamental fre­
quency for the small peak, and assuming that a= 1, the 
extent of the strain field r0 can be estimated to be 
^ 5 A, about one lattice spacing, as would be expected 
for the strain field about an impurity ion. Making the 

12.0 

| I I I I | I I I i | 
Nb- l%Zr 

10.0 Mc sec~! 

I I I I | 

I I I I 1 I I 1 I I I I I 
2.00 3.00 
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FIG. 4. (a) Experimental curve—attenuation versus tempera­
ture at 10.0 Mc sec"1, (b) Composite predicted theoretical curve. 
(c) Individual predicted peaks, 



U L T R A S O N I C A B S O R P T I O N B Y S U P E R C O N D U C T I N G N b - Z r 629 

FIG. 5. (a) Theo­
retical curve previ­
ously obtained, (b) 
Experimental data 
after 2-h anneal. 
(c) Theoretical curve 
after reduction of 
large and medium 
size peaks, (d) Ex­
perimental data after 
18-h anneal. 

same assumptions, the fundamental frequency for the 
large peaks would imply an r0^S A. Since it is expected 
that the strain field about a dislocation line is of greater 
extent than that about an impurity ion, it is seen that 
the variation of frequency with r0 is consistent with the 
interpretation of the source of the various sets of peaks. 

The agreement of the theoretical estimate with the 
experimental values of a and b is quite good. However, 
the justification for the form of x(/o) from the data is 
extremely qualitative. A much more quantitative justifi­
cation for the reduction of the interaction constant for 
small strain fields by %(Vo) is given in the study14 of the 
solute concentration dependence of Tc mentioned above. 

An additional qualitative feature which might be 
discussed in terms of the phenomenological ideas pre­
sented in this development is the temperature depend­
ence of the background attenuation. Even though the 
phase boundaries do not seem to move with the collec­
tive modes in a first approximation, it is still possible 
that the interaction of the compressional sound wave 
and the local strain field does work against the restoring 

forces acting on the phase boundary. If this force is 
dissipative, the energy lost from the sound wave is 
proportional to Fr and would have a temperature de­
pendence similar to that for c2. From the magnitudes 
of a and b for niobium, it can be seen that this function 
is monotonically decreasing for T<TC. Such a mecha­
nism for the absorption of sound energy will be ampli­
tude and frequency dependent. More experimental data 
are necessary before this possibility can be studied 
thoroughly. 

CONCLUSION 

The collective excitation modes discussed herein are 
similar to the low-frequency collective modes introduced 
by Anderson and Bogoliubov except that the present 
calculation is made from a phenomenological viewpoint 
for a finite superconducting phase. The basic assump­
tions that the long-range Coulomb forces can be ignored, 
and that the electron distribution can be treated as a 
neutral Fermi gas are common to both treatments. 
An attempt was made to introduce the features of the 
superconducting state into the hydrodynamic treatment 
through the use of Morel's equation relating the super­
conducting parameters to volume or density changes. 
The resultant temperature dependence of the excitation 
modes is in good agreement with the interpretation of 
the data for the Nb-Zr system. A more fundamental 
calculation of the collective excitation modes for the 
electron distribution in a finite phase should be made. 
At this point it is evident that ultrasonic absorption 
measurements are a particularly direct method for 
studying the microstructure of hard superconductors. 
Further work along these lines is now in progress. 
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